New preprint: predicting rifampicin resistance Philip Fowler, 16th August 202416th August 2024 In this preprint we train a series of machine learning models on protein mutations found in rpoB — this is the gene in the M. tuberculosis RNA polymerase complex where mutations can introduce resistance to rifampicin, an important first-line drug in the treatment of tuberculosis. Unlike pyrazinamide, which we have previously published and binds to pncA, the RNA polymerase is an essential gene and therefore resistance-conferring mutations tend to be subtle and, in this case, mostly close to the rifampicin binding site. We find that all the models achieve similar levels of prediction performance and that the most predictive feature is, perhaps unsurprisingly, the distance from the amino acid being mutated to the centre of mass of rifampicin. All the data and code required to create our Test+Train datasets, train the models and produce nearly all the figures in the preprint is available on GitHub. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related antimicrobial resistance computing publication research tuberculosis
antimicrobial resistance New publication: Reconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in Escherichia coli. 30th March 202022nd August 2020 Clinical microbiology often assumes a sample is resistant or susceptible. Making such a classification relies… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
computing New Publication: Predicting affinities for peptide transporters 29th January 201629th September 2018 PepT1 is a nutrient transporter found in the cells that line your small intestine. It… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
publication New Publication: Flexible Gates Generate Occluded Intermediates in the Transport Cycle of LacY 8th November 2013 In this paper we examine how the lactose permease, LacY, changes its structure to shuttle… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More