Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New preprint: predicting rifampicin resistance

Philip Fowler, 16th August 202416th August 2024

In this preprint we train a series of machine learning models on protein mutations found in rpoB — this is the gene in the M. tuberculosis RNA polymerase complex where mutations can introduce resistance to rifampicin, an important first-line drug in the treatment of tuberculosis. Unlike pyrazinamide, which we have previously published and binds to pncA, the RNA polymerase is an essential gene and therefore resistance-conferring mutations tend to be subtle and, in this case, mostly close to the rifampicin binding site.

We find that all the models achieve similar levels of prediction performance and that the most predictive feature is, perhaps unsurprisingly, the distance from the amino acid being mutated to the centre of mass of rifampicin. All the data and code required to create our Test+Train datasets, train the models and produce nearly all the figures in the preprint is available on GitHub.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance computing publication research tuberculosis

Post navigation

Previous post
Next post

Related Posts

computing

Improving Software Carpentry workshops

1st November 201223rd September 2018

Aron Ahmadia who helped run the Software Carpentry course has written a nice blog where…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New Publication: Structure of MmpL3

21st July 202121st July 2021

Oliver Adams successfully elucidated the structure of the M. tuberculosis MmpL3 membrane transporter using cryo-EM…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New paper: predicting rifampicin resistance via free energy simulation

23rd September 20253rd October 2025

This work was carried out by Xibei Zhang, who is doing her PhD with Peter…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes