New publication: Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of M. tuberculosis Philip Fowler, 26th October 2018 In this Microbiology paper we show how a Python package, called the Automated Mycobacterial Detection Growth Algorithm (AMyDGA for short), can be used to independently read a 96-well plate designed for determining the minimum inhibitory concentration of 14 different anti-tubercular drugs. AMyGDA is reproducible and shows promising levels of accuracy. Where it fails, it does in known ways, for example when there is little bacterial growth, or there are artefacts in the image, such as air bubbles, shadows or condensation. You can download the software. Included are 15 images for testing that allow you to reproduce some of the figures in the paper. AMyGDA was discussed in an earlier post and also underpins the BashTheBug citizen science project since it allows the image of each 96-well plate to be segmented. The BashTheBug volunteers recently completed a million classifications. The international CRyPTIC tuberculosis consortium is already using AMyGDA to quality control the readings used by the laboratory scientists; discrepants are sent to BashTheBug for adjudication. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related antimicrobial resistance citizen science clinical microbiology publication tuberculosis
publication New Publication: State-Dependent Network Connectivity Determines Gating in a K+ Channel 27th June 2014 In an earlier paper we showed that the closed state of Kir1.1, a important potassium… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
antimicrobial resistance New publication: Differential occupational risks to healthcare workers from SARS-CoV- 2 2nd July 202022nd August 2020 Very pleased and proud to be included on this manuscript, which has been published in… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
antimicrobial resistance I’ve moved… 14th March 20165th August 2018 Today is my first day as a Senior Researcher in Modernising Medical Microbiology in the… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More