New publication: Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of M. tuberculosis Philip Fowler, 26th October 2018 In this Microbiology paper we show how a Python package, called the Automated Mycobacterial Detection Growth Algorithm (AMyDGA for short), can be used to independently read a 96-well plate designed for determining the minimum inhibitory concentration of 14 different anti-tubercular drugs. AMyGDA is reproducible and shows promising levels of accuracy. Where it fails, it does in known ways, for example when there is little bacterial growth, or there are artefacts in the image, such as air bubbles, shadows or condensation. You can download the software. Included are 15 images for testing that allow you to reproduce some of the figures in the paper. AMyGDA was discussed in an earlier post and also underpins the BashTheBug citizen science project since it allows the image of each 96-well plate to be segmented. The BashTheBug volunteers recently completed a million classifications. The international CRyPTIC tuberculosis consortium is already using AMyGDA to quality control the readings used by the laboratory scientists; discrepants are sent to BashTheBug for adjudication. Share this:Twitter Related antimicrobial resistance citizen science clinical microbiology publication tuberculosis
antimicrobial resistance Updating the Grammar for Antimicrobial Resistance Catalogues 18th July 202418th July 2024 This blog updates an old (and now out of date) post describing the grammar we’ve… Share this:Twitter Read More
antimicrobial resistance Genetics and Tuberculosis: A Case of New Meets Old 12th July 2019 I was very pleased to be invited to contribute to this “Voices” article organised by… Share this:Twitter Read More
New publication: Predicting antibiotic resistance in complex protein targets using alchemical free energy methods 26th August 202224th October 2022 In this paper, Alice Brankin calculates how different mutations in the DNA gyrase affect the… Share this:Twitter Read More