Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

AMyGDA now available from GitHub

Philip Fowler, 27th January 202027th January 2020

AMyGDA is a python module that analyses photographs of 96-well plates and, by examining each well for bacterial growth, is able to read a series of minimum inhibitory concentrations for the antibiotics present on a plate.

Previously it was only available to download from this website (due to licensing) if you gave your email address which was inconvenient and also meant the public version often lagged the current stable release.

Now it is available directly from GitHub!

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance clinical microbiology computing tuberculosis

Post navigation

Previous post
Next post

Related Posts

computing

GROMACS on AWS

13th January 20164th December 2016

In this post I’m going to show how I created an Amazon Machine Instance with…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
computing

GROMACS on AWS: Performance and Cost

17th January 20163rd March 2019

So we have created an Amazon Machine Image (AMI) with GROMACS installed. In this post…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New paper: automatically and reproducibly building a catalogue bedaquline resistance-associated variants

18th June 20251st July 2025

Dylan Adlard‘s paper describing how we can rapidly automatically build catalogues of bedaquiline resistance-associated variants…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes
     

    Loading Comments...