New preprint: compensatory mutations are associated with increased growth in resistant samples of M. tuberculosis. Philip Fowler, 22nd June 20238th December 2023 In this preprint, Viki Brunner shows how, using the large CRyPTIC dataset, she can recapitulate the result that susceptible M. tuberculosis samples grow faster than samples that are resistant to rifampicin (and do not have any mutation that could compensate for that effect). Using the Fisher’s exact test, she is able to confidently identify 51 putative compensatory mutations, having corrected for linkage disequilibrium, partly by insisting each mutation is homoplastic. Twelve of these hits have not previously been described. There is then a very interesting story about how it appears at first glance that RIF-resistant samples with compensatory mutations grow better not just than those without, but also better than susceptible samples. When you break this down by lineage, it appears confounded with Lineage 2 and also with some clades in our dataset. Our data suggest there is something interesting here, but more detailed experimental work will likely be needed to disentangle exactly what is going on. Share this:TwitterBlueskyEmailLinkedInMastodon Related antimicrobial resistance group publication research tuberculosis
New preprint: automatically building a better bedaquiline catalogue 31st January 202531st January 2025 A catalogue recording whether individual mutations confer resistance or not to specified antibiotics is a… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New publication: Validating a bespoke 96-well plate for high-throughput drug susceptibility testing of M. tuberculosis 28th August 201829th September 2018 This paper, published in Antimicrobial Agents and Chemotherapy, determines the reproducibility and accuracy of minimum… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
publication New Publication: Flexible Gates Generate Occluded Intermediates in the Transport Cycle of LacY 8th November 2013 In this paper we examine how the lactose permease, LacY, changes its structure to shuttle… Share this:TwitterBlueskyEmailLinkedInMastodon Read More