New publication: Predicting antibiotic resistance in complex protein targets using alchemical free energy methods Philip Fowler, 26th August 202224th October 2022 In this paper, Alice Brankin calculates how different mutations in the DNA gyrase affect the binding of an antibiotic, moxifloxacin, and thereby potentially whether those mutations confer resistance or not. She calculates the relative binding free energy using thermodynamic integration, a method that is derived from classical statistical mechanics. To accompany these results, Philip Fowler, carried out a similar investigation but for rifampicin binding to the RNA polymerase. Both are proteins from M. tuberculosis and hence this study is relevant to tuberculosis antibiotic resistance. In past work, we showed that these methods not only could be used to predict resistance for much smaller proteins (DHFR in S. aureus) but also that very short lambda windows could be used, thereby reducing the time to solution. In this work we show that applying the same technique to proteins an order of magnitude larger is, at present, much more challenging with the result that the magnitude of the error in the free energy is often too large to permit a qualitative prediction of resistance or susceptibility. If the mutation confers a high degree of resistance (and therefore a large change in the binding free energy), as is the case for the RNA polymerase but not the DNA gyrase, then successful prediction is possible. This paper therefore probes what is currently feasible and we look forward to returning to these ideas and systems in several year’s time. In an amazing bit of serendipity, the journal, J Comp Chem, posted the paper online the day before Alice was planning on submitting her thesis, allowing her to include the citation! Share this:TwitterBlueskyEmailLinkedInMastodon Related antimicrobial resistance computing molecular dynamics tuberculosis
computing Top Tips for hosting a Software Carpentry Boot Camp 6th November 2012 I’ve written a post for the Software Sustainability Institute (who kindly provided the instructors for… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
New publication: BashTheBug works! 20th May 202219th July 2022 Yesterday eLife published the first paper from our citizen science project, BashTheBug, which was launched… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New publication: Validating a bespoke 96-well plate for high-throughput drug susceptibility testing of M. tuberculosis 28th August 201829th September 2018 This paper, published in Antimicrobial Agents and Chemotherapy, determines the reproducibility and accuracy of minimum… Share this:TwitterBlueskyEmailLinkedInMastodon Read More