New Publication: Structure of MmpL3 Philip Fowler, 21st July 202121st July 2021 Oliver Adams successfully elucidated the structure of the M. tuberculosis MmpL3 membrane transporter using cryo-EM and this has recently been published online in Structure. This was the main aim of his PhD studies in Simon Newstead‘s group in the Department of Biochemistry here in Oxford. It is an important protein structure since although other MmpL3 structures have been solved, this is the first one from M. tuberculosis and, as the only essential member of the MmpL family, is targeted by a number of drugs under development, for example SQ109 which is currently in Phase 2 clinical trials. Being able to see how the drug interacts with the protein can help us understand a variety of effects, from binding to resistance. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related antimicrobial resistance publication research tuberculosis
antimicrobial resistance New publication: Differential occupational risks to healthcare workers from SARS-CoV- 2 2nd July 202022nd August 2020 Very pleased and proud to be included on this manuscript, which has been published in… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
New publication: BashTheBug works! 20th May 202219th July 2022 Yesterday eLife published the first paper from our citizen science project, BashTheBug, which was launched… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
publication New Publication: State-Dependent Network Connectivity Determines Gating in a K+ Channel 27th June 2014 In an earlier paper we showed that the closed state of Kir1.1, a important potassium… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More