Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

AMyGDA now available from GitHub

Philip Fowler, 27th January 202027th January 2020

AMyGDA is a python module that analyses photographs of 96-well plates and, by examining each well for bacterial growth, is able to read a series of minimum inhibitory concentrations for the antibiotics present on a plate.

Previously it was only available to download from this website (due to licensing) if you gave your email address which was inconvenient and also meant the public version often lagged the current stable release.

Now it is available directly from GitHub!

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance clinical microbiology computing tuberculosis

Post navigation

Previous post
Next post

Related Posts

Desirable features for any antibiotic resistance catalogue

31st October 202331st October 2023

In the past few years a growing number of catalogues containing mutations associated with resistance…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New preprint: rapid prediction of AMR by free energy methods

15th January 202015th January 2020

The story behind this preprint goes back to the workshop on free energy methods run…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New Publication: Predicting whether mutations confer resistance to an antibiotic

5th January 201829th September 2018

Due to the rise of antibiotic resistance, it is increasingly important that your clinician knows…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes