New preprint: Predicting pyrazinamide resistance by machine learning Philip Fowler, 29th April 201929th April 2019 Usually, the protein that an antibiotic binds is essential for bacterial survival, which is how the drug has its effect. In this case, relatively few protein mutations arise that confer resistance, they are often subtle in nature and one can try to predict the phenotype of a protein mutation by considering how it affects the binding free energy of an antibiotic. Resistance to pyrazinamide (PZA), which is a first-line anti-tuberculosis compound, mainly arises via genetic variation in the pncA gene, which, unusually, is not essential in M. tuberculosis. One finds a wide range of genetic variation in clinical samples, from missense mutations to insertions and deletions and even the insertion of stop codons. This makes building a catalogue that specifies the effect of each genetic variant on the action of PZA more challenging since one has to classify many more variants. A current leading resistance catalogue specifies the effect of over 450 pncA single nucleotide polymorphisms yet even that level of detail only allows a prediction to be made for 75% of clinical samples. In this preprint, Josh Carter has applied several Machine Learning methods to a curated, high-quality set of pncA mutations and, by including a range of structural and chemical features, is able to predict the effect of pncA missense mutations to a good degree of sensitivity and specificity. One application of this model would be to provide a preliminary classification for the 25% of clinical samples that the heuristic catalogues cannot make a prediction. Share this:Twitter Related antimicrobial resistance clinical microbiology publication research tuberculosis
computing New Publication: Predicting affinities for peptide transporters 29th January 201629th September 2018 PepT1 is a nutrient transporter found in the cells that line your small intestine. It… Share this:Twitter Read More
New preprint: validating antibiotic resistance prediction in our Myco pipeline 9th November 20249th November 2024 Over the last 18 months or so we’ve been designing, coding and testing a Mycobacterial… Share this:Twitter Read More
GPAS stopover on the ORACLE road trip 1st February 20221st February 2022 You can listen to Philip Fowler talk about the Global Pathogen Analysis System (GPAS) as… Share this:Twitter Read More