Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New Publication: Proteins Alter the Stiffness of Membranes

Philip Fowler, 23rd September 201629th September 2018

Although there have been many studies of proteins whose primary function is to ‘sculpt’ the surface of membranes e.g. BAR domains, there have been very few investigations of what effect regular membrane proteins have on the stiffness of membranes. Here we show via very large simulations, using the MARTINI coarse-grained forcefield, that ‘regular’ integral membrane proteins, such as an ion channel or a beta-barrel, reduce the stiffness of the membrane, leading to larger fluctuations. The systems studied push the boundaries of what is currently achievable with biomolecular simulation, containing around 50,000 lipids and 100 proteins. We had access to the French supercomputer CURIE, through the EU PRACE network, for this work.

This is the second in a set of three papers that bring my research on cell signalling and membranes in the SBCB group within the Department of Biochemistry to a close and is available to download here.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

publication research

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New preprint: Deciphering bedaquiline and clofazimine resistance in tuberculosis

22nd March 202122nd March 2021

In this preprint we examine 14,151 clinical isolates drawn from the CRyPTIC dataset. Each isolate…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
publication

New Publication: Effect of SAO mutation on Band 3

12th January 201729th September 2018

There is a lovely story behind this paper just published earlier this week in Biochemistry….

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

Research position advertised

26th January 202126th January 2021

Come and work with me on antimicrobial resistance! Advert here. Broadly the idea is to…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Comment

  1. Pingback: New Publication: Protein crowding affects the organisation of ion channels – Fowler Lab

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes