Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New Publication: Predicting affinities for peptide transporters

Philip Fowler, 29th January 201629th September 2018

PepT1 is a nutrient transporter found in the cells that line your small intestine. It is not only responsible for the uptake of di- and tai-peptides, and therefore much of your dietary proteins, but also the uptake of most β-lactam antibiotics. This serendipity ensures that we can take (many of) these important drugs orally.

Our ultimate goal is to develop the capability to predict modifications to drug scaffolds that will improve or enable their uptake by PepT1, thereby improving their oral bioavailability.

In this paper, just published online in the new journal Cell Chemical Biology (and free to download, thanks to the Wellcome Trust), we show that it is possible to predict how well a series of di- and tai-peptides bind to a bacterial homologue of PepT1 using a hierarchical approach that combines an end-point free energy method with thermodynamic integration. Since there is no structure of PepT1, we then tried our method on a homology model we have published in 2015. We found that method lost its predictive power. By studying a range of homology models of intermediate quality, we showed that it is highly likely an experimental structure of hPepT1 will be required for in silico accurate predictions of transport.

This is the second paper that Firdaus Samsudin has published as part of his DPhil here in Oxford.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

computing molecular dynamics publication research

Post navigation

Previous post
Next post

Related Posts

computing

GROMACS2018 on NVIDIA DGX-1s

27th September 201929th October 2019

HECBioSim advertised for proposals to use JADE, the new Tier-2 UK GPU high performance computer…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New paper: Quantitative drug susceptibility testing for M. tuberculosis using unassembled sequencing data and machine learning

14th August 202414th August 2024

This is the last paper from the initial set of CRyPTIC publications following the project’s…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New preprint: rapid prediction of AMR by free energy methods

15th January 202015th January 2020

The story behind this preprint goes back to the workshop on free energy methods run…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes