New Publication: NRas slows the rate at which a model lipid bilayer phase separates Philip Fowler, 13th June 2014 Here we examine by computer simulation what effect adding a small cell-signalling protein does to a model ternary lipid mixture that has been shown before to phase separate. This paper was presented at the 169th Faraday Discussion meeting in Nottingham in May 2014, the theme of which was Molecular simulations and visualization. We followed the progress of the phase separation of the lipid bilayer by measuring the length of the interface using an edge detection algorithm from image processing. An example python script can be downloaded here. We found that the protein, NRas, indeed slows down the rate at which the bilayer phase separates. The protein also tends to localise to the interface between the domains which is consistent with it acting to reduce the line tension between the phases. The questions asked during the discussion (and my answers) will be posted on the journal’s website soon. I’ll update this post when that happens. This paper is open access so is free to download. Share this:TwitterBlueskyEmailLinkedInMastodon Related publication
antimicrobial resistance New preprint: compensatory mutations are associated with increased growth in resistant samples of M. tuberculosis. 22nd June 20238th December 2023 In this preprint, Viki Brunner shows how, using the large CRyPTIC dataset, she can recapitulate… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New preprint: Predicting pyrazinamide resistance by machine learning 29th April 201929th April 2019 Usually, the protein that an antibiotic binds is essential for bacterial survival, which is how… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
publication New Publication: Detailed examination of a single conduction event in a potassium channel. 15th October 2013 What can we learn using computational methods about how potassium ions and water molecules move… Share this:TwitterBlueskyEmailLinkedInMastodon Read More