New Publication: The Extra-Cellular Domain of PepT1 and PepT2 Philip Fowler, 2nd November 2015 PepT1 is a nutrient transporter found in the cells that line your small intestine. It is not only responsible for the uptake of di- and tai-peptides, and therefore much of your dietary proteins, but also the uptake of most β-lactam antibiotics. This serendipity ensures that we can take (many of) these important drugs orally. Our ultimate goal is to develop the capability to predict modifications to drug scaffolds that will improve or enable their uptake by PepT1, thereby improving their oral bioavailability. In Structure we report the structures of the extra-cellular domains (ECDs) of PepT1 and PepT2. This is an important milestone on the road to elucidating a structure of PepT1 and allows us to propose the first full-length structural model of PepT1 (see above). Intriguingly, the data also suggests that the ECD also interacts with trypsin, thereby increasing the local concentration of peptides around the transporter, improving its efficiency. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related publication research
antimicrobial resistance Updating the Grammar for Antimicrobial Resistance Catalogues 18th July 202418th July 2024 This blog updates an old (and now out of date) post describing the grammar we’ve… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
publication New Publication: State-Dependent Network Connectivity Determines Gating in a K+ Channel 27th June 2014 In an earlier paper we showed that the closed state of Kir1.1, a important potassium… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
antimicrobial resistance New preprint: compensatory mutations are associated with increased growth in resistant samples of M. tuberculosis. 22nd June 20238th December 2023 In this preprint, Viki Brunner shows how, using the large CRyPTIC dataset, she can recapitulate… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More