New Publication: The Extra-Cellular Domain of PepT1 and PepT2 Philip Fowler, 2nd November 2015 PepT1 is a nutrient transporter found in the cells that line your small intestine. It is not only responsible for the uptake of di- and tai-peptides, and therefore much of your dietary proteins, but also the uptake of most β-lactam antibiotics. This serendipity ensures that we can take (many of) these important drugs orally. Our ultimate goal is to develop the capability to predict modifications to drug scaffolds that will improve or enable their uptake by PepT1, thereby improving their oral bioavailability. In Structure we report the structures of the extra-cellular domains (ECDs) of PepT1 and PepT2. This is an important milestone on the road to elucidating a structure of PepT1 and allows us to propose the first full-length structural model of PepT1 (see above). Intriguingly, the data also suggests that the ECD also interacts with trypsin, thereby increasing the local concentration of peptides around the transporter, improving its efficiency. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related publication research
New preprint: validating antibiotic resistance prediction in our Myco pipeline 9th November 202413th January 2025 Over the last 18 months or so we’ve been designing, coding and testing a Mycobacterial… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
publication New publication: Nothing to Sneeze At – A Dynamic and Integrative Computational Model of an Influenza A Virion 6th March 2015 In this paper we show how we built and then simulated a model of the… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
antimicrobial resistance New preprint: Predicting pyrazinamide resistance by machine learning 29th April 201929th April 2019 Usually, the protein that an antibiotic binds is essential for bacterial survival, which is how… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More