Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New publication: CRyPTIC GWAS of antitubercular resistance

Philip Fowler, 16th August 202216th August 2022

Since the primary goal of CRyPTIC was to map the genetic variants in M. tuberculosis associated with resistance to different antibiotics, this genome-wide association study is one of the key research outputs of the project.

It brings together all the samples with genetic and drug susceptibility testing (DST) data and therefore relies on all the efforts to reduce the errors in the DST data, for example using AMyGDA to read the photographs of the 96-well plates and the efforts of the BashTheBug volunteers.

In addition to associating genes already known to confer resistance to specific antibiotics, putative resistance genes are proposed for each of the thirteen drugs on the UKMYC series of broth microdilution plates.

Danny Wilson and Sarah Earle led the GWAS analysis, which is complicated not only by the population structure (lineages) of M. tuberculosis but also by the fact that the resistance to each drug correlates with resistance to other drugs. Our involvement was mainly in improving the quality of the DST data, thereby improving the signal-to-noise ratio.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance clinical microbiology tuberculosis

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New software: gemucator

4th September 20184th September 2018

Short for “Genbank Mutation Locator”. A simple Python3 package that if you pass it a…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

Accelerating Oxford Nanopore basecalling

26th January 20175th August 2018

It looks innocuous sitting on the desk, an Oxford Nanopore MinION, but it can produce…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Desirable features for any antibiotic resistance catalogue

31st October 202331st October 2023

In the past few years a growing number of catalogues containing mutations associated with resistance…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes
     

    Loading Comments...