Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New preprint: Deciphering bedaquiline and clofazimine resistance in tuberculosis

Philip Fowler, 22nd March 202122nd March 2021

In this preprint we examine 14,151 clinical isolates drawn from the CRyPTIC dataset. Each isolate had its minimum inhibitory concentration (MIC) to bedaquiline and clofazimine measured and hence we were able to identify the transcription regulator Rv0678, as the current main source of elevated MICs to both these drugs.

Lindsay Sonnenkalb, who is studying for her PhD with Stefan Niemann, then evolved Mycobacterium tuberculosis strains under sub-lethal concentrations of both compounds and was able to identify 189 different Rv0678 genetic variants that confer elevated MICs to bedaquiline and clofazimine.

Detailed modelling of the protein structure allowed us to posit four main resistance mechanisms: impairment of DNA binding, reduction in protein stability, disruption of protein dimerization, and reduction in affinity for its fatty acid ligand.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance clinical microbiology publication

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

Research position advertised

26th January 202126th January 2021

Come and work with me on antimicrobial resistance! Advert here. Broadly the idea is to…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New publication: Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex

9th March 202016th March 2020

Although the population structure M. tuberculosis is clonal, one must be careful when inferring the…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
molecular dynamics

New Publication: Alchembed

12th June 2015

In much of my research I’ve looked at how proteins embedded in cell membranes behave. An…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes