New preprint: Deciphering bedaquiline and clofazimine resistance in tuberculosis Philip Fowler, 22nd March 202122nd March 2021 In this preprint we examine 14,151 clinical isolates drawn from the CRyPTIC dataset. Each isolate had its minimum inhibitory concentration (MIC) to bedaquiline and clofazimine measured and hence we were able to identify the transcription regulator Rv0678, as the current main source of elevated MICs to both these drugs. Lindsay Sonnenkalb, who is studying for her PhD with Stefan Niemann, then evolved Mycobacterium tuberculosis strains under sub-lethal concentrations of both compounds and was able to identify 189 different Rv0678 genetic variants that confer elevated MICs to bedaquiline and clofazimine. Detailed modelling of the protein structure allowed us to posit four main resistance mechanisms: impairment of DNA binding, reduction in protein stability, disruption of protein dimerization, and reduction in affinity for its fatty acid ligand. Share this:Twitter Related antimicrobial resistance clinical microbiology publication
antimicrobial resistance New paper: Quantitative drug susceptibility testing for M. tuberculosis using unassembled sequencing data and machine learning 14th August 202414th August 2024 This is the last paper from the initial set of CRyPTIC publications following the project’s… Share this:Twitter Read More
clinical microbiology New publication: Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care Workers 13th January 202113th January 2021 A second Covid-19 publication I’m proud to be (a small) part of has recently published… Share this:Twitter Read More
antimicrobial resistance Updated preprint: predicting pyrazinamide resistance 21st November 20238th December 2023 This study was performed by Josh Carter back in 2019 and we uploaded a preprint… Share this:Twitter Read More