Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New Publication: Membrane Compartmentalization Reduces the Mobility of Lipids.

Philip Fowler, 23rd September 201629th September 2018

Lipids are not free to diffuse around the cell membrane. Rather they are constrained not just by all the embedded proteins but also by the cytoskeleton, which, it has been suggested, corral the lipids. In this paper, we show by very large coarse-grained simulations of a realistic model of the plasma membrane how compartmentalisation leads to reduced, anomalous diffusion of both lipids and proteins.

This is the first in a set of three papers that bring my research on cell signalling and membranes in the SBCB group within the Department of Biochemistry to a close and is available to download here.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

publication research

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New paper: quantitative measurement of effect of mutations on antibiotics in M. tuberculosis

15th January 202415th January 2024

The CRyPTIC project played a major role in the release by the WHO of their…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New preprint: compensatory mutations are associated with increased growth in resistant samples of M. tuberculosis.

22nd June 20238th December 2023

In this preprint, Viki Brunner shows how, using the large CRyPTIC dataset, she can recapitulate…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New publication: Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex

9th March 202016th March 2020

Although the population structure M. tuberculosis is clonal, one must be careful when inferring the…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes