New Publication: State-Dependent Network Connectivity Determines Gating in a K+ Channel Philip Fowler, 27th June 2014 In an earlier paper we showed that the closed state of Kir1.1, a important potassium ion channel found in the kidneys, was stabilised by a single hydrogen bond. This paper builds on that work by looking for any interactions that stabilise either the open or closed state of the channel by systematically mutating the majority of the residues to alanine. We were surprised to find that 47 mutations destabilised the open state but only 2 destabilised the closed state, one of which was the one we’d found before. Modelling suggests that this is because open conformations of the channel are more optimised and compact hence mutations tend to be more disruptive. The work was partly funded by the Wellcome Trust and hence the paper is free to download. Share this:TwitterBlueskyEmailLinkedInMastodon Related publication research
antimicrobial resistance New preprint: Predicting antibiotic resistance in complex protein targets 4th January 20224th January 2022 In this preprint, which Alice has been working on for several years, we show how… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance Postdoctoral position advertised 17th May 202117th May 2021 Through the CompBioMed2 EU Centre of Excellence project I have funding to appoint a postdoctoral… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New publication: Assessing Drug Susceptibility in Tuberculosis 28th September 201829th September 2018 A paper was published in the New England Journal of Medicine earlier this week by… Share this:TwitterBlueskyEmailLinkedInMastodon Read More