New Publication: State-Dependent Network Connectivity Determines Gating in a K+ Channel Philip Fowler, 27th June 2014 In an earlier paper we showed that the closed state of Kir1.1, a important potassium ion channel found in the kidneys, was stabilised by a single hydrogen bond. This paper builds on that work by looking for any interactions that stabilise either the open or closed state of the channel by systematically mutating the majority of the residues to alanine. We were surprised to find that 47 mutations destabilised the open state but only 2 destabilised the closed state, one of which was the one we’d found before. Modelling suggests that this is because open conformations of the channel are more optimised and compact hence mutations tend to be more disruptive. The work was partly funded by the Wellcome Trust and hence the paper is free to download. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related publication research
antimicrobial resistance New publication: Validating a bespoke 96-well plate for high-throughput drug susceptibility testing of M. tuberculosis 28th August 201829th September 2018 This paper, published in Antimicrobial Agents and Chemotherapy, determines the reproducibility and accuracy of minimum… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
antimicrobial resistance New paper: Quantitative drug susceptibility testing for M. tuberculosis using unassembled sequencing data and machine learning 14th August 202414th August 2024 This is the last paper from the initial set of CRyPTIC publications following the project’s… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
computing New Publication: Predicting affinities for peptide transporters 29th January 201629th September 2018 PepT1 is a nutrient transporter found in the cells that line your small intestine. It… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More