New Publication: Detailed examination of a single conduction event in a potassium channel. Philip Fowler, 15th October 2013 What can we learn using computational methods about how potassium ions and water molecules move through the narrowest part of a potassium channel? In this paper, we calculate the average force experienced by three potassium ions as they move through the selectivity filter of a voltage-gated potassium channel. This allows us to identify the most probably mechanism, which includes two “knock-on” events, just like a Newton’s cradle. By examining the behaviour of the conducting waters and the protein in detail we can see how the waters rotate to coordinate one or other of the conducting potassium ions, and even get squeezed between two potassium ions during a knock-on event. We also see how the coordination number of each potassium ion changes. This article is published in the Journal of Physical Chemistry Letters and is free to download (open access). There is an accompanying paper that is published in the Journal of Chemical Theory and Computation. Share this:Twitter Related publication research papersresearch
antimicrobial resistance New preprint: rapid prediction of AMR by free energy methods 15th January 202015th January 2020 The story behind this preprint goes back to the workshop on free energy methods run… Share this:Twitter Read More
antimicrobial resistance New publication: Differential occupational risks to healthcare workers from SARS-CoV- 2 2nd July 202022nd August 2020 Very pleased and proud to be included on this manuscript, which has been published in… Share this:Twitter Read More
antimicrobial resistance Postdoctoral position advertised 17th May 202117th May 2021 Through the CompBioMed2 EU Centre of Excellence project I have funding to appoint a postdoctoral… Share this:Twitter Read More