New Publication: Detailed examination of a single conduction event in a potassium channel. Philip Fowler, 15th October 2013 What can we learn using computational methods about how potassium ions and water molecules move through the narrowest part of a potassium channel? In this paper, we calculate the average force experienced by three potassium ions as they move through the selectivity filter of a voltage-gated potassium channel. This allows us to identify the most probably mechanism, which includes two “knock-on” events, just like a Newton’s cradle. By examining the behaviour of the conducting waters and the protein in detail we can see how the waters rotate to coordinate one or other of the conducting potassium ions, and even get squeezed between two potassium ions during a knock-on event. We also see how the coordination number of each potassium ion changes. This article is published in the Journal of Physical Chemistry Letters and is free to download (open access). There is an accompanying paper that is published in the Journal of Chemical Theory and Computation. Share this:TwitterBlueskyEmailLinkedInMastodon Related publication research papersresearch
computing New Publication: Predicting affinities for peptide transporters 29th January 201629th September 2018 PepT1 is a nutrient transporter found in the cells that line your small intestine. It… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
publication New Publication: Lipids can form anti-registered phases 23rd September 201629th September 2018 When we think of lipids phase separating in a cell membrane we usually think of… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New paper: detecting compensatory mutations in the RNAP of M. tuberculosis 5th February 20245th February 2024 In this paper, by examining testing the association between mutations known to be associate with… Share this:TwitterBlueskyEmailLinkedInMastodon Read More