New Publication: Detailed examination of a single conduction event in a potassium channel. Philip Fowler, 15th October 2013 What can we learn using computational methods about how potassium ions and water molecules move through the narrowest part of a potassium channel? In this paper, we calculate the average force experienced by three potassium ions as they move through the selectivity filter of a voltage-gated potassium channel. This allows us to identify the most probably mechanism, which includes two “knock-on” events, just like a Newton’s cradle. By examining the behaviour of the conducting waters and the protein in detail we can see how the waters rotate to coordinate one or other of the conducting potassium ions, and even get squeezed between two potassium ions during a knock-on event. We also see how the coordination number of each potassium ion changes. This article is published in the Journal of Physical Chemistry Letters and is free to download (open access). There is an accompanying paper that is published in the Journal of Chemical Theory and Computation. Share this:Twitter Related publication research papersresearch
antimicrobial resistance New preprint: Predicting pyrazinamide resistance by machine learning 29th April 201929th April 2019 Usually, the protein that an antibiotic binds is essential for bacterial survival, which is how… Share this:Twitter Read More
antimicrobial resistance New publication: Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex 9th March 202016th March 2020 Although the population structure M. tuberculosis is clonal, one must be careful when inferring the… Share this:Twitter Read More
publication New Publication: Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels 31st October 2013 Can we predict the conductance of a potassium ion channel from an experimental structure? In this… Share this:Twitter Read More