Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New Publication: Detailed examination of a single conduction event in a potassium channel.

Philip Fowler, 15th October 2013

What can we learn using computational methods about how potassium ions and water molecules move through the narrowest part of a potassium channel?

In this paper, we calculate the average force experienced by three potassium ions as they move through the selectivity filter of a voltage-gated potassium channel. This allows us to identify the most probably mechanism, which includes two “knock-on” events, just like a Newton’s cradle. By examining the behaviour of the conducting waters and the protein in detail we can see how the waters rotate to coordinate one or other of the conducting potassium ions, and even get squeezed between two potassium ions during a knock-on event. We also see how the coordination number of each potassium ion changes.

This article is published in the Journal of Physical Chemistry Letters and is free to download (open access). There is an accompanying paper that is published in the Journal of Chemical Theory and Computation.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

publication research papersresearch

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New print: Epidemiological cutoff values for a 96-well broth microdilution plate for M. tuberculosis

5th March 202122nd March 2021

In this preprint, the CRyPTIC project proposes the maximum value of minimum inhibitory concentration (MIC)…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New paper: automatically and reproducibly building a catalogue bedaquline resistance-associated variants

18th June 20251st July 2025

Dylan Adlard‘s paper describing how we can rapidly automatically build catalogues of bedaquiline resistance-associated variants…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New paper: predicting rifampicin resistance via free energy simulation

23rd September 20253rd October 2025

This work was carried out by Xibei Zhang, who is doing her PhD with Peter…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes