Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New preprint: processing 3.9 million SARS-CoV-2 samples to make a consistent phylogenetic tree

Philip Fowler, 7th May 20247th May 2024

Martin Hunt, Zam Iqbal and lots of others have written an epic preprint where they describe their variant caller, viridian, that was written expressly for producing a consensus genome for a virus using tiled amplicon sequencing. We deployed viridian into our cloud-based sequencing platform during the pandemic and several of us are co-authors on the preprint.

Rather than just write a straightforward methods paper, they choose to take it a few steps further and download all the publicly available SARS-CoV-2 FASTQ files from the ENA (which was about 3.9 million) and process them with viridian and then build a phylogenetic tree that is missing some of the artefacts that plague the trees if you simply take FASTA files that have been deposited using a range of genetic pipelines.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

clinical microbiology gpas

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New paper: predicting pyrazinamide resistance

20th March 202420th March 2024

This paper has finally been published and you can find it here. It had a…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New preprint: rapid prediction of AMR by free energy methods

15th January 202015th January 2020

The story behind this preprint goes back to the workshop on free energy methods run…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New publication: Automated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of M. tuberculosis

26th October 2018

In this Microbiology paper we show how a Python package, called the Automated Mycobacterial Detection Growth…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes