Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New publication: how quickly can be calculate the effect of a mutation on an antibiotic?

Philip Fowler, 20th November 202020th November 2020

The idea for this paper arose during talking over coffee at the BioExcel Alchemical Free Energy workshop in May 2019. We’d previously shown that alchemical free energy methods could successfully predict which mutations in S. aureus DHFR  confer resistance to trimethoprim (and crucially, which do not). That is all well and good, but to do this at scale, we’d need to be able to run such calculations quickly, hence this paper.

Part of the answer is making use of high performance computing, but part is also accepting that the primary goal of the calculations is not quantitative accuracy and precision, but instead resolving which side of a free threshold the change in antibiotic binding free energy induced by the mutation lies. That in turn enables the use of large numbers of very short lambda simulations which can be run in parallel, reducing the time-to-solution even further.

This, or similar methods, could be used in drug development (to assess how many codon mutations could allow a protein to escape the action of an inhibitor) or in diagnostics.

The paper is part of a special issue on Computational Medicine.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance computing distributed computing GPUs molecular dynamics publication research

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

GPAS

17th May 202113th October 2021

I’ve been working on this for the last few months and very happy that we…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
computing

GROMACS on AWS: compiling GCC

27th January 201623rd September 2018

These are some quick instructions on how to build a more recent version of GCC…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
publication

New publication: Gating Topology of the Proton-Coupled Oligopeptide Symporters

3rd February 2015