Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New publication: how quickly can be calculate the effect of a mutation on an antibiotic?

Philip Fowler, 20th November 202020th November 2020

The idea for this paper arose during talking over coffee at the BioExcel Alchemical Free Energy workshop in May 2019. We’d previously shown that alchemical free energy methods could successfully predict which mutations in S. aureus DHFR  confer resistance to trimethoprim (and crucially, which do not). That is all well and good, but to do this at scale, we’d need to be able to run such calculations quickly, hence this paper.

Part of the answer is making use of high performance computing, but part is also accepting that the primary goal of the calculations is not quantitative accuracy and precision, but instead resolving which side of a free threshold the change in antibiotic binding free energy induced by the mutation lies. That in turn enables the use of large numbers of very short lambda simulations which can be run in parallel, reducing the time-to-solution even further.

This, or similar methods, could be used in drug development (to assess how many codon mutations could allow a protein to escape the action of an inhibitor) or in diagnostics.

The paper is part of a special issue on Computational Medicine.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance computing distributed computing GPUs molecular dynamics publication research

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

Updated preprint: predicting pyrazinamide resistance

21st November 20238th December 2023

This study was performed by Josh Carter back in 2019 and we uploaded a preprint…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
meetings

Analysing Simulation Data CECAM Workshop, Jülich, 14-15 October 2015

28th October 2015

This two day workshop on Analysing Simulation Data was part of the larger CECAM Macromolecular…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

GARC: A Grammar for Antimicrobial Resistance Catalogues

25th November 201817th November 2020

During the CRyPTIC project it has become obvious that we need a grammar to describe…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes
     

    Loading Comments...