Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New publication: Assessing Drug Susceptibility in Tuberculosis

Philip Fowler, 28th September 201829th September 2018

A paper was published in the New England Journal of Medicine earlier this week by the CRyPTIC project, of which I am part, with help from the 100,000 genomes project.

It demonstrates how whole genome sequencing can be used to accurately predict drug susceptibility for the four first-line anti-tubercular drugs (isoniazid, rifampicin, pyrazinamide and ethambutol) and, crucially, how the accuracy only degrades slowly as the local prevalence of resistance increases.

All the 10,000 samples had qualitative drug susceptibility profiles gathered using the MGIT system which simply reports whether a sample is resistant or sensitive to a drug. CRyPTIC is currently collecting >30,000 samples using a 96-well plate containing 14 different drugs and therefore will be reporting quantitative data (i.e. minimum inhibitory concentrations). So, whilst this is a good first step, I expect the project to produce a wide range of even more exciting studies in the next few years.

Since our ability to draw inferences from correlations between the genetic and phenotypic data depend critically on minimising the errors in the data, I have been heavily involved developing methods to allow us to quality control the measurements made in the different consortium laboratories. These are

  1.  AMyGDA. This is software that automatically analyses photographs of the 96 well plates CRyPTIC is using. You can read more here. A paper is accepted and I’ll update this post when I have a link.
  2. BashTheBug. This is a Citizen Science project hosted on the Zooniverse where anyone can classify a few (or a thousand) images taken from the 96 well plates.

These independent sets of measurements are then combined with those collected in the laboratories and a consensus is reached, hopefully minimising errors, improving signal to noise and reducing therefore the number of samples we need before we can start e.g. identifying new genes and genetic variants that can confer resistance to anti-TB drugs.

In short, watch this space!

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

antimicrobial resistance citizen science clinical microbiology publication tuberculosis

Post navigation

Previous post
Next post

Related Posts

New grant: Ox4TB

17th March 202517th March 2025

Very pleased to announce that I am a co-investigator on the recently announced Oxford4TB project…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

SARS-CoV-2 pipeline live on EIT Pathogena

28th January 202528th January 2025

Back in the SARS-CoV-2 pandemic we worked closely with ORACLE Corp to build and deploy…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New Publication: Structure of MmpL3

21st July 202121st July 2021

Oliver Adams successfully elucidated the structure of the M. tuberculosis MmpL3 membrane transporter using cryo-EM…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: Cookie Policy
    ©2026 Fowler Lab | WordPress Theme by SuperbThemes