Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New Publication: Alchembed

Philip Fowler, 12th June 2015

In much of my research I’ve looked at how proteins embedded in cell membranes behave. An important part in any simulation of a membrane protein is, obviously, putting it into a model membrane, often a square patch of several hundred lipid molecules. This is surprisingly difficult: although a slew of methods have been published, none of them can embed several proteins simultaneously into a complex (non-flat) arrangement of lipids. For example, a virus, as shown in our recent paper.

Here we introduce a new method, dubbed Alchembed, that uses an alternative way, borrowed from free energy calculations, of “turning on” the van der Waals interactions between the protein and the rest of the system. We show how it can be used to embed five different proteins into a model vesicle on a standard workstation. If you want to try it out, there is a tutorial on GitHub. This assumes you have GROMACS is setup

 

You can get the paper for free from here.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

molecular dynamics publication research

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New preprint: predicting rifampicin resistance

16th August 202416th August 2024

In this preprint we train a series of machine learning models on protein mutations found…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
antimicrobial resistance

New paper: automatically and reproducibly building a catalogue bedaquline resistance-associated variants

18th June 20251st July 2025

Dylan Adlard‘s paper describing how we can rapidly automatically build catalogues of bedaquiline resistance-associated variants…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
publication

New Publication: State-Dependent Network Connectivity Determines Gating in a K+ Channel

27th June 2014

In an earlier paper we showed that the closed state of Kir1.1, a important potassium…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes
     

    Loading Comments...