New publication: Nothing to Sneeze At – A Dynamic and Integrative Computational Model of an Influenza A Virion Philip Fowler, 6th March 2015 In this paper we show how we built and then simulated a model of the influenza A virion. Rather than model every atom of every lipid, a “coarse-grained” representation (MARTINI) is instead used which replaces roughly every four atoms by a single coarse-grained bead. Microsecond simulations then start to give us insight into how the surface proteins move and whether they cluster. For these simulations we used the PRACE supercomputer, CURIE, which is based in France. I’ve previously posted some scaling data on the different PRACE machines – the system used was not the virion but is similar in size. With a system of this size and complexity just creating the initial set of coordinates is a challenge. My part in this project was to develop a new method for inserting the surface proteins into the lipids. This method is currently under review at another journal and I will update this blog post when it is published. The paper is free to download and you can find it here. Oh, and this makes three papers in the journal Structure in the last eight months which is new PB. Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Related publication
New preprint: comparing different genetics analysis pipelines for tuberculosis 13th January 202513th January 2025 Ruan Spies has done a careful systematic comparison of the current genetics pipelines that purport… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
publication New Publication: Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels 31st October 2013 Can we predict the conductance of a potassium ion channel from an experimental structure? In this… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More
antimicrobial resistance New preprint: rapid prediction of AMR by free energy methods 15th January 202015th January 2020 The story behind this preprint goes back to the workshop on free energy methods run… Share this: Click to share on X (Opens in new window) X Click to share on Bluesky (Opens in new window) Bluesky Click to email a link to a friend (Opens in new window) Email Click to share on LinkedIn (Opens in new window) LinkedIn Click to share on Mastodon (Opens in new window) Mastodon Read More