Skip to content
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

  • News
  • Research
    • Overview
    • Manifesto
    • Software
    • Reproducibility
    • Publications
  • Members
  • Teaching
  • Contact
    • PhDs
  • Wiki
Fowler Lab
Fowler Lab

Predicting antibiotic resistance de novo

New publication: Nothing to Sneeze At – A Dynamic and Integrative Computational Model of an Influenza A Virion

Philip Fowler, 6th March 2015

In this paper we show how we built and then simulated a model of the influenza A virion. Rather than model every atom of every lipid, a “coarse-grained” representation (MARTINI) is instead used which replaces roughly every four atoms by a single coarse-grained bead. Microsecond simulations then start to give us insight into how the surface proteins move and whether they cluster. For these simulations we used the PRACE supercomputer, CURIE, which is based in France. I’ve previously posted some scaling data on the different PRACE machines – the system used was not the virion but is similar in size.

With a system of this size and complexity just creating the initial set of coordinates is a challenge. My part in this project was to develop a new method for inserting the surface proteins into the lipids. This method is currently under review at another journal and I will update this blog post when it is published.

The paper is free to download and you can find it here.

Oh, and this makes three papers in the journal Structure in the last eight months which is new PB.

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

publication

Post navigation

Previous post
Next post

Related Posts

antimicrobial resistance

New paper: Quantitative drug susceptibility testing for M. tuberculosis using unassembled sequencing data and machine learning

14th August 202414th August 2024

This is the last paper from the initial set of CRyPTIC publications following the project’s…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More
publication

New Publication: Lipids can form anti-registered phases

23rd September 201629th September 2018

When we think of lipids phase separating in a cell membrane we usually think of…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

New paper: Evaluating 12 WGS analysis pipelines for MBTC

21st October 202529th October 2025

Ruan Spies did a careful systematic analysis of the publicly-available pipelines that claimed to process…

Share this:

  • Click to share on X (Opens in new window) X
  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to email a link to a friend (Opens in new window) Email
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Mastodon (Opens in new window) Mastodon
Read More

Comment

  1. Pingback: New Publication: Alchembed | Philip W Fowler

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.

To find out more, including how to control cookies, see here: Cookie Policy
    ©2025 Fowler Lab | WordPress Theme by SuperbThemes