Cheltenham Science Festival Philip Fowler, 22nd June 20165th August 2018 A bit over a week ago I helped run the Modernising Medical Microbiology stall at the Cheltenham Science Festival. This was my first time helping explain about antibiotic resistance to, well, anyone and everyone. As I come from a molecular background and we didn’t have any information about protein structure, I thought I’d put together something explaining how mutations in the bacterial genome can prevent an antibiotic from binding to its target protein, thereby giving rise to resistance. The chosen medium for this was Lego (DUPLO to be precise.). I wanted to be able to let younger children play with the DUPLO and then I could use the LEGO models to show it to older children (and adults). This is shown above. Then, for older children, we could move onto looking at a real protein structure with an antibiotic bound (using the same colours as the LEGO to make it obvious). Under the hood this is VMD but I coded a simplified GUI to make it easier to use. Using the surface representation as shown, by turning the antibiotic on and off, you can clearly see how well it fits in the protein and so how a small change would be sufficient to disrupt the binding. Overall it went well and we had a constant stream of people at our stall. What struck me was how some of the children were genuinely fascinated; I even turned around at one point to find a 9 year old rotating the protein on my laptop. You could talk to kids like this and (try to) explain concepts way beyond the national curriculum (like atomic theory and molecules). We had some mini GiantMicrobes – the “superbug” MRSA with its cape was a favourite. If you gave one of these to the kids who were very interested they loved it, and, I hope, may have lit the touch paper for an interest in science. Share this:TwitterBlueskyEmailLinkedInMastodon Related antimicrobial resistance clinical microbiology teaching tuberculosis
New preprint: a deep learning model that can read 96-well broth micro dilution plates 23rd February 202523rd February 2025 The CRyPTIC project used bespoke 96-well broth microdilution plates to measure the minimum inhibitory concentrations… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New print: Epidemiological cutoff values for a 96-well broth microdilution plate for M. tuberculosis 5th March 202122nd March 2021 In this preprint, the CRyPTIC project proposes the maximum value of minimum inhibitory concentration (MIC)… Share this:TwitterBlueskyEmailLinkedInMastodon Read More
antimicrobial resistance New Publication: Structure of MmpL3 21st July 202121st July 2021 Oliver Adams successfully elucidated the structure of the M. tuberculosis MmpL3 membrane transporter using cryo-EM… Share this:TwitterBlueskyEmailLinkedInMastodon Read More