For a more detailed description of my Automated Mycobacterial Growth Detection Algorithm, including how to download, please go to the AMyGDA page.


This GitHub repository contains a set of example GROMACS input files that allows you to reproduce a set of free energy calculations, as described in this paper (link will be added when published). Shell scripts are included to simplify launching and analysing the GROMACS simulations.


I like jitter plots, but neither of my standard plotting tools, gnuplot and matplotlib, were equipped to do them, so I wrote this simple Python to ‘jitter’ some data.


This GitHub repository contains the key Python code for calculating the undulation and thickness power spectra of large lipid bilayers (like the one below). It was introduced in this paper and then also used here and here. Like the other repositories, it contains a tutorial and some sample data allowing you to reproduce one of the figures from the original paper.


This GitHub repository accompanies this paper. It explains how you can use the soft-core van der Waals functionality in GROMACS to rapidly embed proteins (or anything else, such as benzene rings as shown below) in membranes. To simplify the process, a series of shell scripts are included that call GROMACS.


This GitHub repository accompanies this paper and walks you through using image processing in Python to examine phase separation in a bilayer containing three very different species of lipids. A subsequent paper relied on the same approach.