Publications We maintain an update list of our publications below. For Philip Fowler’s citation metrics, please see his Google Scholar page, whereas for altmetrics (readers, tweets etc) please see his ImpactStory pages. If you would like a copy of any of these papers, please check out the list on his ORCID pages, departmental webpages, my ResearchGate site, or get in touch. The Group has a GitHub organisation and Philip also has his own personal GitHub pages where various pieces of code and examples can be cloned. Finally, there is a figshare page where you can find some (now old) Prelim (first year) biochemistry lecture notes. Members of the group have their name in bold. Preprints Below are a list of manuscripts that are available as a preprint but have not yet been accepted in a peer-reviewed journal. Once accepted they will have their details updated. 79. Westhead J, Baker CS, Brouard M, Colpus M, Constantinides B, Hall A, Knaggs J, Lopes Alves M, Spies R, Thai H, Surrell S, Govender K, Peto TEA, Crook DW, Omar SV, Turner R, Fowler PWEnhancement and validation of the antibiotic resistance prediction performance of a cloud-based genetics processing platform for MycobacteriabioRxiv preprint doi:10.1101/2024.11.08.622466 78. Lynch CI, Adlard D, Fowler PWPredicting rifampicin resistance in M. tuberculosis using machine learning informed by protein structural and chemical features.bioRxiv preprint doi:10.1101/2024.08.15.608097 77. Hunt M, Hinrichs AS, Anderson D, Karim L, Dearlove BL, Knaggs J, Constantinides B, Fowler PW, Rodger G, Street TL, Lumley SF, Webster H, Sanderson T, Ruis C, Maio ND, Amenga-Etego LN, Amuzu DS, Avaro M, Awandare GA, Ayivor-Djanie R, Bashton M, Batty EM, Bediako Y, Belder DD, Benedetti E, Bergthaler A, Boers SA, Campos J, Carr RAA, Cuba F, Dattero ME, Dejnirattisai W, Dilthey AT, Duedu KO, Endler L, Engelmann I, Francisco NM, Fuchs J, Z. EG, Groc S, Gyamfi J, Heemskerk D, Houwaart T, Hsiao N, Huska M, Hoelzer M, Iranzadeh A, Jarva H, Jeewandara C, Jolly B, Joseph R, Kant R, Ki KKK, Kurkela S, Lappalainen M, Lataretu M, Liu C, Malavige GN, Mashe T, Mongkolsapaya J, Montes B, Molina-Mora JA, Morang’a CM, Mvula B, Nagarajan N, Nelson A, Ngoi JM, Paixao JPd, Panning M, Poklepovich T, Quashie PK, Ranasinghe D, Russo M, San JE, Sanderson ND, Scaria V, Screaton G, Sironen T, Sisay A, Smith D, Smura T, Supasa P, Suphavilai C, Swann J, Tegally H, Tegomoh B, Vapalahti O, Walker A, Wilkinson R, Williamson C, IMSSC2 Laboratory Network Consortium, de Oliveira T, Peto TE, Crook D, Corbett-Detig R, Iqbal ZAddressing pandemic-wide systematic errors in the SARS-CoV-2 phylogenybioRxiv preprint doi:10.1101/2024.04.29.591666 76. Amoako D, Anh NT, Brouard M, Romero CC, Ramirez AC, Constantinides B, Crook D, Cuong PM, Diagne MM, Diallo A, Dung NT, Dunn L, Duyet LV, Everatt J, Fletcher K, Fowler PW, Gail M, Gharbia S, Hospital for Tropical Diseases SARS-CoV-2 testing team, Hong NTT, Hunt M, Iqbal Z, Jeffery K, Kekana D, Kesteman T, Knaggs J, Alves ML, Man DNH, Mathers AJ, Ngoc MN, Oakley S, Parikh H, Peto T, Herrera MR, Sanderson N, Sintchenko V, Swann J, Tam NT, Tan LV, Thach PN, Top NM, Trang NT, Trang VD, Van Doorn HR, von Gottberg A, Wolter N, Young BCSARS-CoV-2 sequencing with cloud-based analysis illustrates expedient co-ordinated surveillance of viral genomic epidemiology across six continentsmedRxiv preprint doi:10.1101/2023.11.27.23298986 75. Constantinides B, Webster H, Gentry J, Bastable J, Dunn L, Oakley S, Swann J, Sanderson N, Fowler PW, Peto TEA, Stoesser N, Street T, Crook DWRapid turnaround multiplex sequencing of SARS-CoV-2: comparing tiling amplicon protocol performance medRxiv preprint doi:10.1101/2021.12.28.21268461 2024 74. Farrar A, Feehily C, Turner P, Zagajewski A, Chatzimichail S, Crook D, Andersson M, Oakley S, Barrett L, El Sayyed H, Fowler PW, Nellåker C, Kapanidis AN, Stoesser NInfection Inspection: Using the power of citizen science to help with image-based prediction of antibiotic resistance in Escherichia coli treated with ciprofloxacin.Sci Rep 14:19543 doi:10.1038/s41598-024-69341-3medRxiv preprint doi:10.1101/2023.12.11.23299807 73. The CRyPTIC ConsortiumQuantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learningPLoS Comp Biol doi: 10.1371/journal.pcbi.1012260bioRxiv preprint. doi: 10.1101/2021.09.14.458035 72. Carter JJ, Walker TM, Waker AS, Whitfield M, Morlock GP, Lynch CI, Adlard D, Peto TEA, Posey JE, Crook DW, Fowler PW. Prediction of pyrazinamide resistance in Mycobacterium tuberculosis using structure-based machine learning approaches.JAC AMR 6:dlae037 doi:10.1093/jacamr/dlae037bioRxiv preprint doi:10.1101/518142 71. Brunner V, Fowler PWCompensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis.mGen 10:001187 doi:10.1099/mgen.0.001187bioRxiv preprint doi:10.1101/2023.06.21.545231 70. The CRyPTIC ConsortiumQuantitative measurement of antibiotic resistance in M. tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach.Nature Comms 15:488 doi:10.1038/s41467-023-44325-5bioRxiv preprint doi:10.1101/2021.09.14.460353 2023 69. Davies TJ, Swann J, Sheppard AE, Pickford H, Lipworth S, AbuOun M, Ellington M, Fowler PW, Hopkins S, Hopkins KL, Crook DW, Peto TEA, Anjum MF, Walker AS, Stoesser NDiscordance between different bioinformatic methods for identifying resistance genes from short-read genomic data, with a focus on Escherichia colimGen 9:001151 & bioRxiv preprint doi:10.1101/2021.11.03.467004 68. The CRyPTIC ConsortiumReply: “Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M. tuberculosis.”Eur Resp J 61:2300426 doi:10.1183/13993003.00426-2023 67. Brankin AE, Fowler PWInclusion of minor alleles improves catalogue-based prediction of fluoroquinolone resistance in M. tuberculosisJ Antimicrob Chemother AMR 5:dlad039 doi:10.1093/jacamr/dlad039 bioRxiv preprint doi:10.1101/2022.11.09.515757 66. Dreyer V, Mandal A, Dev P, Merker M, Barilar I, Utpatel C, Nilgiriwala K, Rodrigues K, Crook DW, The CRyPTIC Consortium, Rasigade JP, Wirth T, Mistry N, Niemann SHigh fluoroquinolone resistance proportions among multidrug-resistant tuberculosis driven by dominant L2 Mycobacterium tuberculosis clones in the Mumbai Metropolitan RegionGenome Med 22:14 doi:10.1186/s13073-022-01076-0 65. Sonnenkalb L, Carter JJ, Spitaleri A, Iqbal Z, Hunt M, Malone K, Utpatel C, Cirrillo DM, Rodrigues C, Nilgiriwala KS, the CRyPTIC Consortium, Fowler PW, Merker M, Niemann S.Deciphering Bedaquiline and Clofazimine Resistance in Tuberculosis: An Evolutionary Medicine ApproachLancet Microbe 54:e358 doi:10.1016/S2666-5247(23)00002-2 bioRxiv preprint doi:10.1101/2021.03.19.436148. 2022 64. Hunt M, Letcher B, Malone KM, Nguyen G, Hall MB, Colquhoun RM, Lima L, Schatz M, Ramakr- 2022 ishnan S, The CRyPTIC Consortium, Iqbal ZMinos: variant adjudication and joint genotyping of cohorts of bacterial genomesGenome Biology 23:147doi:10.1186/s13059-022-02714-xbioRxiv preprint: doi:10.1101/2021.09.15.460475 63. The CRyPTIC ConsortiumA data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibioticsPLoS Biology 20(8):e3001721 doi:10.1371/journal.pbio.3001721bioRxiv preprint doi:10.1101/2021.09.14.460274 62. The CRyPTIC ConsortiumGenome-wide association studies of global Mycobacterium tuberculosis resistance to thirteen antimicrobials in 10,228 genomesPLoS Biology 20(8):e3001755 doi:10.1371/journal.pbio.3001755bioRxiv preprint doi:10.1101/2021.09.14.460272 61. Brankin AE, Fowler PWPredicting antibiotic resistance in complex protein targets using alchemical free energy methodsJ Comp Chem 43:1771 doi:10.1002/jcc.26979 chemRxiv preprint doi:10.26434/chemrxiv-2021-shfgp 60. Fowler PW, Wright C, Spiers H, Zhu T, Baeten EML, Hoosdally SW, Gibertoni Cruz AL, Roohi A, Kouchaki S, Walker TM, Peto TEA, Miller G, Lintott C, Clifton D, Crook DW, Walker AS, The CRyPTIC ConsortiumBashTheBug: a crowd of volunteers reproducibly and accurately measure the minimum inhibitory concentrations of 13 antitubercular drugs from photographs of 96-well broth microdilution plateseLife 11:e75046 doi:10.7554/eLife.75046bioRxiv preprint doi:10.1101/2021.07.20.453060 59. Hunt M, Swann J, Constantinides B, Fowler PW, Iqbal ZReadItAndKeep: rapid decontamination of SARS-CoV-2 sequencing readsBioinformatics 38:3291 doi:10.1093/bioinformatics/btac311bioRxiv preprint doi:10.1101/2022.01.21.477194 58. World Health OrganizationOptimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complexISBN: 9789240047419 57. The CRyPTIC ConsortiumEpidemiological cutoff values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M. tuberculosis.Eur Resp J 60:2200239 doi:10.1183/13993003.00239-2022 medRxiv preprint doi:10.1101/2021.02.24.21252386. 56. Walker TM, Miotto P, Köser CU, Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat M, Cirillo DM, Comas I, Posey JE, Omar SV, Peto TEA, Suresh A, Uplekar S, Laurent S, ColmanR, Nathanson CM, Zignol M, Walker AS, the CRyPTIC Consortium, the Seq&Treat Consortium,Crook DW, Ismail N, Rodwell TCThe 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A new global standard for molecular diagnosticsLancet Microbe 3:E265doi:10.1016/S2666-5247(21)00301-3 2021 55. Adams O, Deme JC, Parker JL, the CRyPTIC Consortium, Fowler PW, Lea SM, Newstead S Cryo-EM Structure and Resistance Landscape of M. tuberculosis MmpL3: An Emergent Therapeutic TargetStructure 29:1182doi:10.1016/j.str.2021.06.013 54. Ismail NA, Nathanson CM, Korobitsyn A, Zignol M, Kasaeva T, Rodwell T, Miotto P, Walker TM, 2021 66 Fowler PW, Knaggs J, Iqbal Z, Hunt M, Chindelevitch L, Farhat M, Cirillo D, Crook DW, Comas I, Posey J, Vally Omar S, Peto TEA, Walker AS, Suresh A, Uplekar S, Laurent S, Colman RCatalogue of mutations in M. tuberculosis complex and their association with drug resistance.World Health Organization ISBN: 9789240028173 53. Lumley SF, Rodger G, Constantinides B, Sanderson N, Chau KK, Street TL, O’Donnell D, Howarth A, Hatch SB, Marsden BD, Cox S, James T, Warren F, Peck LJ, Ritter TG, de Toledo Z, Warren L, Axten D, Cornall RJ, Jones EY, Stuart DI, Screaton G, Ebner D, Hoosdally S, Chand M,Oxford University Hospitals Staff Testing Group, Crook DW, O’Donnell A, Conlon CP, Pouwels KB, Walker AS, Peto TEA, Hopkins S, Walker TM, Stoesser NE, Matthews PC, Jeffery K, Eyre DWAn observational cohort study on the incidence of SARS-CoV-2 infection and B.1.1.7 variant infection in healthcare workers by antibody and vaccination statusaccepted by Clin Infec Dis doi: 10.1093/cid/ciab608medRxiv preprint doi: 10.1101/2021.03.09.21253218 52. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch, SB, Marsden BD, et al. and the Oxford University Hospitals Staff Testing GroupAntibody Status and Incidence of SARS-CoV-2 Infection in Health Care WorkersN Eng J Med 384:533doi:10.1056/NEJMoa2034545 51. Lumley SF, Wei J, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, Marsden BD, Cox S, James T, Peck LJ, Ritter TG, de Toledo Z, Cornall RJ, Jones EY, Stuart DI, Screaton G,Ebner D, Hoosdally S, Crook DW, Conlon CP, Pouwels KB, Walker AS, Peto TEA, Walker TM,Jeffery K, Eyre DW, Oxford University Hospitals Staff Testing GroupThe Duration, Dynamics, and Determinants of SARS-CoV-2 Antibody Responses in Individual Healthcare WorkersClin Infec Dis 73:e699doi: 10.1093/cid/ciab004and medRxiv preprint doi: 10.1101/2020.11.02.20224824 2020 50. Fowler PWHow quickly can we predict trimethoprim resistance using alchemical free energy methods? Interface Focus 10:20190141doi: 10.1098/rsfs.2019.0141 and bioRxiv preprint doi:10.1101/2020.01.13.904664 49. Eyre DW, Lumley SF, Donnell DO, Campbell M, Sims E, Lawson E, Warren F, James T, Cox S, Howarth A, Doherty G, Hatch SB, Kavanagh J, Chau KK, Fowler PW, Swann J, Volk D, Yang-Turner F, Stoesser NE, Matthews PC, Dudareva M, Davies T, Shaw RH, Peto L, et al.Differential occupational risks to healthcare workers from SARS-CoV-2 observed during a prospective observational studyeLife 9:e60675 doi: 10.7554/eLife.60675 and medRxiv preprintdoi:10.1101/2020.06.24.20135038 48. Davies TJ, Stoesser N, Sheppard AE, Abuoun M, Fowler PW, Swann J, Quan P, Griffiths D, Vaughan A, Morgan M, Phan HTT, Jeffery KJM, Andersson M, Eillington M, Ekelund O, Mathers A, Bonomo R, Woodford N, Crook DW, Peto TEA, Anjum M, Walker ASReconciling the potentially irreconcilable? Genotypic and phenotypic amoxicillin-clavulanate resistance in E. coli. Antimicrobial Agent Chemo 64:e02026doi: 10.1128/AAC.02026-19 and preprint doi:10.1101/511402 47. Wilson DJ, CRyPTIC ConsortiumGenomegaMap: within-species genome-wide dN/dS estimation from over 10,000 genomes.Mol Biol Evol msaa0699 doi: 10.1093/molbev/msaa069 and biorXiv preprint doi: 10.1101/523316 46. Merker M, Kohl TA, Barilar I, Andres S, Fowler PW, Chryssanthou E, Ängeby K, Jureen P, Moradigaravand D, Parkhill J, Peacock SJ, Schön T, Maurer F, Walker TM, Köser C, Niemann S. Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Medicine 12:27 doi: 10.1186/s13073-020-00726-5 2019 45. Hunt M, Bradley P, Lapierre SG, Heys S, Thomsit M, Hall MB, Malone KM, Wintringer P, Walker TM, Cirillo DM, Comas I, Farhat MR, Fowler PW, Gardy J, Ismail N, Kohl TA, Mathys V, Merker M, Niemann S, Omar SV, Sintchenko V, Smith G, van Soolingen D, Supply P, Tahseen S, Wilcox M, Arandjelovic I, Peto TEA, Crook DW, Iqbal Z.Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with MykrobeWellcome Open Research 4:191doi:10.12688/wellcomeopenres.15603.1 44. Brankin AE, Fowler PWPredicting Resistance is (Not) Futile.ACS Cent Sci. 5:1312doi: 10.1021/acscentsci.9b00791 43. Collins JJ, Brown E, Baym M, Wright GD, Dantas G, Burrows L, Liu GY, Fowler PW, Whitchurch CB, Skelly AN, Honda K, Strathdee SA, Patterson TL.Overcoming Antibiotic Resistance.Cell Host Microbe 26:8.doi: 10.1016/j.chom.2019.06.007 42. Yang-Turner F, Volk D, Fowler PW, Hoosdally S, Peto TEA, Crook DWScalable Pathogen Pipeline Platform (SP3) Enabling Unified Genomic Data Analysis with Elastic Cloud ComputingIEEE Cloud 2019 478doi: 10.1109/CLOUD.2019.00083 41. Yang Y, Walker TM, Walker AS, Wilson DJ, Peto TEA, Crook DW, Shamout F, CRyPTIC Consortium, Zhu T, Clifton DADeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosisBioinformatics 35:3240doi: 10.1093/bioinformatics/btz067 40. Kouchaki S, Yang Y, Walker TM, Walker AS, Wilson DJ, Peto TEA, Crook DW, CRyPTIC Consortium, Clifton DAApplication of machine learning techniques to tuberculosis drug resistance analysisBioinformatics 35:2276doi: 10.1093/bioinformatics/bty949 2018 39. Fowler PW, Gibertoni-Cruz AL, Hoosdally S, Jarrett L, Borroni E, Chiacchiaretta M, Rathod P, Lehmann S, Molodtsov N, Grazian C, Walker TM, Robinson E, Hoffmann H, Peto TEA, Cirillo DM, Smith EG, Crook DWAutomated detection of bacterial growth on 96-well plates for high-throughput drug susceptibility testing of Mycobacterium tuberculosisMicrobiology 164:1522 doi: 10.1099/mic.0.000733 and biorXiv preprint doi: 10.1101/229427 38. The CRyPTIC Consortium and the 100,000 Genomes ProjectPrediction of Susceptibility to First-Line Tuberculosis Drugs by DNA SequencingN Eng J Med 379:1403doi: 10.1056/NEJMoa1800474 37. Rancoita PMV, Cugnata F, Gibertoni-Cruz AL, Borroni E, Hoosdally SJ, Walker TM, Grazian C, 2018 12 Davies TJ, Peto TEA, Crook DW, Fowler PW, Cirillo DM and the CRyPTIC consortiumValidating a 14-Drug Microtiter Plate Containing Bedaquiline and Delamanid for Large-Scale Re-search Susceptibility Testing of Mycobacterium tuberculosisAntimicrob Agent Chemo 62:e00344 doi: 10.1128/AAC.00344-18 and biorXiv preprint doi: 10.1101/244731 36. Fowler PW, Coles K, Gordon NC, Kearns AM, Llewelyn MJ, Peto TEA, Crook DW, Walker ASRobust prediction of resistance to trimethoprim in S. aureusCell Chem Biol 25:339doi: 10.1016/j.chembiol.2017.12.009 2017 35. Duncan A, Reddy T, Koldsø H, Helie J, Fowler PW, Chavent M, Sansom MSP Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranesSci. Rep. 7:16647doi: 10.1038/s41598-017-16865-6 34. Fowler PW, Sansom MSP, Reithmeier RAFEffect of the Southeast Asian Ovalocytosis Deletion on the Conformational Dynamics of the Signal-Anchor Transmembrane Segment 1 of the Red Cell Anion Exchanger 1 (AE1, Band 3).Biochemistry56:712doi: 10.1021/acs.biochem.6b00966 2016 33. Fowler PW, Helie J, Duncan AL,Chavent M, Koldsø H, Sansom MSP Membrane stiffness is modified by integral membrane proteins.Soft Matter 12:7792doi: 10.1039/c6sm01186a 32. Fowler PW, Williamson JJ, Sansom MSP, Olmsted PDRoles of interleaflet coupling and hydrophobic mismatch in lipid membrane phase-separation kinetics.J Am Chem Soc 138:11633doi: 10.1021/jacs.6b04880 31. Koldsø H, Reddy T, Fowler PW, Duncan AL, Sansom MSP Membrane compartmentalization reduces the mobility of lipids and proteins within a model plasma membrane.J Phys Chem B 120:8873doi: 10.1021/acs.jpcb.6b05846 30. Samsudin F, Parker JL, Sansom MSP, Newstead and Fowler PWAccurate prediction of ligand affinities for a peptide transporter.Cell Chem Biol 23:299doi: 10.1016/j.chembiol.2015.11.015 2015 29. Beale JH, Parker JL, Samsudin F, Barret AL, Senan A, Bird LE, Scott D, Owens RJ, Sansom MSP, 2015 23 Tucker SJ, Meredith D, Fowler PW and Newstead SCrystal structures of the extracellular domain from PepT1 and PepT2 provide novel insights into mammalian peptide transport.Structure 23:1889.doi: 10.1016/j.str.2015.07.016 28. Jefferys E, Sands Z, Shi J, Sansom MSP and Fowler PW Alchembed: A computational method for incorporating proteins into complex lipid geometries.J Chem Theo Comp. 11:2743doi: 10.1021/ct501111d 27. Reddy T, Shorthouse D, Parton D, Jefferys E, Fowler PW, Chavent M, Baaden M, Sansom MSP (2015)Nothing to sneeze at: a dynamic and integrative computational model of an influenza A virion.Structure. 23:584. doi: 10.1016/j.str.2014.12.019 26. Fowler PW, Orwick-Rydmark M, Radestock S, Solcan N, Dijkman P, Lyons JA, Kwok J, Caffery M, Watts A, Forrest LR and Newstead S (2015)Gating topology of the proton coupled oligopeptide symporters.Structure 23:290.doi: 10.1016/j.str.2014.12.012 2014 25. Fowler PW, Bollepalli MK, Rapedius M, Shang L, Nematian E, Sansom MSP, Tucker SJ, Baukrowitz T (2014)Insights into the structural nature of the transition state in the Kir channel gating pathway. Channels 8:551doi: 10.4161/19336950.2014.962371 24. Bollepalli MK, Fowler PW, Rapedius M, Shang L, Sansom MSP, Tucker SJ, Baukrowitz T (2014)State dependent network connectivity determines gating in a K+ channel.Structure 22:1037 23. Jefferys E, Sansom MSP and Fowler PW (2014)NRas slows the rate at which a model lipid bilayer phase separates. RSC Faraday Discussion 169:209doi: 10.1039/c3fd00131h 22. Stelzl L, Fowler PW, Sansom MSP and Beckstein O (2014)Flexible gates generate occluded intermediates in the transport cycle of LacY. J Mol Biol 426:735doi: 10.1016/j.jmb.2013.10.024 2013 21. Fowler PW, Beckstein O, Abad E and Sansom MSP (2013)Detailed examination of a single conduction event in a potassium channel. J Phys Chem Lett 4:3104doi: 10.1021/jz4014079 20. Fowler PW, Abad E, Beckstein O and Sansom MSP (2013)Energetics of multi-ion conduction pathways in potassium ion channels. J Chem Theo Comp 9:5176doi: 10.1021/ct4005933 19. Fowler PW and Sansom MSP (2013)The pore of voltage-gated potassium ion channels is strained when closed. Nature Communications 4:1872doi: 10.1038/ncomms2858 2012 18. Solcan N, Kwok J, Fowler PW, Cameron AD, Drew D, Iwata S and Newstead S (2012)Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 31:3411doi: 10.1038/emboj.2012.157 2011 17. Newstead S, Drew D, Cameron AD, Postis VLG, Xia X, Fowler PW, Carpenter EP, Sansom MSP, McPheron MJ, Baldwin SA and Iwata S (2011)Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2.EMBO J 30:417doi: 10.1038/emboj.2010.309 2010 16. Paynter JJ, Andres-Enguix I, Fowler PW, Tottey S, Cheng W, Enkvetchakul D, Bavro VN, Kusakabe Y, Sansom MSP, Robinson NJ, Nichols CG and Tucker SJ (2010)Functional complementation and genetic deletion studies of KirBac channels.J Biol Chem 285:40754doi: 10.1074/jbc.M110.175687 2009 15. Newstead S, Fowler PW, Bilton P, Carpenter E, Sadler P, Campopiano D, Sansom M, Iwata S (2009)Insights into how nucleotide-binding domains power ABC transport.Structure 17:1213doi: 10.1016/j.str.2009.07.009 14. Abad E, Reingruber J, Fowler PW and Sansom MSP (2009)A novel rate theory approach to transport in ion channels. TACC 1102:236doi: 10.1063/1.3108380 2008 13. Tai K, Fowler PW, Mokrab Y, Stansfield P and Sansom MSP (2008)Molecular modeling and simulation studies of ion channel structures, dynamics & mechanisms.Methods Nano Cell Biol 90:233doi: 10.1016/S0091-679X(08)00812-1 12. Psachoulia E, Fowler PW, Bond PJ and Sansom MSP (2008)Helix-helix interactions in membrane proteins: Coarse grained simulations of Glycophorin helix dimerization.Biochemistry. 47:10503doi: 10.1021/bi800678t 11. Fowler PW, Tai K and Sansom MSP (2008)The selectivity of K+ ion channels: testing the hypotheses. Biophys J 95:5062doi: 10.1529/biophysj.108.132035 2007 10. Rapedius M, Paynter J, Fowler PW, Shang L, Sansom MSP, Tucker SJ and Baukrowitz T (2007)Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by h-bonding at the helix bundle crossing.Channels. 1:327doi: 10.4161/chan.5176 9. Rapedius M, Fowler PW, Shang L, Sansom MSP, Tucker SJ and Baukrowitz T (2007)H-Bonding at the helix-bundle crossing controls gating in Kir potassium channels. Neuron 55:602doi: 10.1016/j.neuron.2007.07.026 8. Fowler PW, Geroult S, Jha S, Waksman G and Coveney PV (2007)Rapid, accurate and precise calculation of relative binding affinities for the SH2 domain using a computational grid.J Comp Theo Chem 3:1193doi: 10.1021/ct6003017 7. Fowler PW , Balali-Mood K , Deol SS, Coveney PV and Sansom MSP (2007)Monotopic proteins and lipid bilayers: a comparative study. Biochemistry. 46:3108doi: 10.1021/bi602455n 2006 6. Fowler PW and Coveney PV (2006)A computational protocol for the integration of the monotopic protein PGHS into a bilayer. Biophys J 91:401doi: 10.1529/biophysj.105.077784 2005 5. Coveney PV and Fowler PW (2006)Modelling biological complexity: a physical scientist’s perspective. J R Soc Interface 2:267doi: 10.1098/rsif.2005.0045 4. Fowler PW, Jha S and Coveney PV (2005)Grid-based steered thermodynamic integration accelerates the calculation of binding affinities. Phil Trans R Soc Lond A 363(1833):1999doi: 10.1098/rsta.2005.1625 3. Giordanetto F, Fowler PW, Saqi M, and Coveney PV (2005)Large scale molecular dynamics simulation of native and mutant DHPS complexes suggests the molecular basis for dihydropteroate synthase drug resistance.Phil Trans R Soc Lond A 363:(1833):2055doi: 10.1098/rsta.2005.1629 2004 2. Fowler PW, Coveney PV, Jha S and Wan S (2004)Exact calculation of peptide-protein binding energies by steered thermodynamic integration using high performance computing grids.Proceedings of the UK e-Science All Hands Meeting 1998 1. Al-Mushadani O, Boghosian BM, Coveney PV, Fowler PW, Maillet JB and Wilson JL (1998)Lattice-Gas Simulations of Ternary Amphiphilic Fluid Flow in Porous Media.Int J Mod Phys C 9:1479doi: 10.1142/S0129183198001345 Share this:Twitter